AI RAG Engine (LLM)
Architecture Visual
AI RAG Engine (LLM)
Large Language Models (LLMs) like GPT-4 are powerful but frozen in time and lack knowledge of your private data. Retrieval-Augmented Generation (RAG) bridges this gap by injecting relevant context from your own documents into the LLM’s prompt window.
This blueprint establishes a production-grade RAG pipeline capable of digesting PDFs, databases, and internal wikis to answer user queries accurately without hallucinations.
Architecture
The workflow consists of two main pipelines: Ingestion and Inference.
-
Ingestion:
- Load: Extract text from varied sources (S3, SQL, Notion).
- Split: Chunk text into manageable pieces (e.g., 500 tokens).
- Embed: Convert chunks into vector embeddings (numbers representing meaning).
- Store: Save vectors in a specialized Vector Database.
-
Inference (Query):
- User Question: “What is our refund policy?”
- Search: Convert question to vector -> Find nearest neighbors in DB.
- Augment: Append found text chunks to a system prompt.
- Generate: LLM provides the final answer based only on the provided context.
Use Cases
- Internal Knowledge Base: Chatbot that answers HR questions based on Confluence pages.
- Legal Contract Analysis: “Summarize the indemnification clause in these 50 PDFs.”
- Customer Support: Auto-draft responses based on past resolved tickets.
- Code Assistant: Query your own codebase for implementation details.
Implementation Guide
We will build a Python-based RAG engine using LangChain, Qdrant (Vector DB), and OpenAI.
Prerequisites
- Python 3.10+
- Docker (for Qdrant)
- OpenAI API Key
Step 1: Setup Vector Database
We utilize Qdrant for its speed and ease of use.
# docker-compose.yml
version: '3'
services:
qdrant:
image: qdrant/qdrant
ports:
- "6333:6333"
volumes:
- ./qdrant_storage:/qdrant/storage
Run it:
docker-compose up -d
Step 2: Ingestion Pipeline
Create ingest.py to load data and populate the Vector DB.
"""
ingest.py - Loads data into Qdrant
Dependencies: pip install langchain qdrant-client openai tiktoken langchain-community
"""
import os
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant
from langchain_openai import OpenAIEmbeddings
# configuration
os.environ["OPENAI_API_KEY"] = "sk-..."
COLLECTION_NAME = "my_knowledge_base"
def ingest():
# 1. Load Data
loader = TextLoader("./company_policy.txt")
documents = loader.load()
# 2. Split Text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
chunks = text_splitter.split_documents(documents)
print(f"Split into {len(chunks)} chunks")
# 3. Embed & Store
embeddings = OpenAIEmbeddings()
Qdrant.from_documents(
chunks,
embeddings,
url="http://localhost:6333",
collection_name=COLLECTION_NAME
)
print("Ingestion Complete!")
if __name__ == "__main__":
ingest()
Step 3: Query Engine
Create query.py to ask questions.
"""
query.py - Chat with your data
"""
import os
from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_openai import OpenAIEmbeddings
import qdrant_client
os.environ["OPENAI_API_KEY"] = "sk-..."
COLLECTION_NAME = "my_knowledge_base"
def ask(question):
# Connect to DB
client = qdrant_client.QdrantClient(url="http://localhost:6333")
embeddings = OpenAIEmbeddings()
vector_store = Qdrant(
client=client,
collection_name=COLLECTION_NAME,
embeddings=embeddings
)
# Setup LLM & Chain
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True
)
# Execute
print(f"User: {question}")
result = qa_chain.invoke({"query": question})
print(f"AI: {result['result']}")
print("\nSources:")
for doc in result['source_documents']:
print(f"- {doc.page_content[:50]}...")
if __name__ == "__main__":
ask("What is the policy on remote work?")
Production Readiness Checklist
Deploying LLMs requires strict guardrails.
[ ] Chunking Strategy: Verified that chunk_size (e.g., 500 vs 2000) matches the complexity of the documents.
[ ] Embedding Model: Selected the right model (e.g., text-embedding-3-small vs Ada-002) for cost/performance.
[ ] Vector Persistence: Qdrant volume is mounted to persistent disk (EBS/PVC).
[ ] Rate Limiting: Implemented exponential backoff for OpenAI API calls (429 Too Many Requests).
[ ] Hallucination Check: Added a system prompt instruction: “If you don’t know the answer based on the context, say ‘I don’t know’.”
[ ] Cost Estimation: Calculated daily token usage. (Avg query = 500 input + 200 output tokens).
[ ] Privacy: Ensured PII is masked before sending text to external Embedding APIs.
Cloud Cost Estimator
Dynamic Pricing Calculator