ai
advanced

AI RAG Engine (LLM)

Architecture Visual

graph TD classDef actor fill:#fef3c7,stroke:#d97706,stroke-width:2px,color:#000 classDef gateway fill:#e0f2fe,stroke:#0284c7,stroke-width:2px,color:#000 classDef network fill:#f0f9ff,stroke:#0ea5e9,stroke-width:1px,stroke-dasharray: 5 5,color:#000 classDef service fill:#dbeafe,stroke:#2563eb,stroke-width:2px,color:#000 classDef database fill:#dcfce7,stroke:#16a34a,stroke-width:2px,color:#000 classDef function fill:#f3e8ff,stroke:#9333ea,stroke-width:2px,color:#000 subgraph inference ["Inference Pipeline"] direction TB query_api("<div style='text-align: center;'><img src='/icons/inframap/edge.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Query API</b></div>"):::gateway retriever("<div style='text-align: center;'><img src='/icons/inframap/compute.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Retrieval Service</b></div>"):::service llm_service("<div style='text-align: center;'><img src='/icons/inframap/ai.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>LLM Service</b></div>"):::service end subgraph data_pipeline ["Data Pipeline"] direction TB ingestion_pipeline("<div style='text-align: center;'><img src='/icons/inframap/container.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Document Ingestion</b></div>"):::service embedding_service("<div style='text-align: center;'><img src='/icons/inframap/ai.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Embedding Service</b></div>"):::service doc_storage("<div style='text-align: center;'><img src='/icons/inframap/storage.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Document Storage</b></div>"):::database vector_db("<div style='text-align: center;'><img src='/icons/inframap/database.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Vector Database</b></div>"):::database end users("<div style='text-align: center;'><img src='/icons/inframap/user.png' style='width: 48px; height: 48px; object-fit: contain;' /><br/><b>Users</b></div>"):::actor users --> query_api query_api --> retriever query_api --> llm_service retriever --> vector_db ingestion_pipeline --> embedding_service ingestion_pipeline --> vector_db

AI RAG Engine (LLM)

Large Language Models (LLMs) like GPT-4 are powerful but frozen in time and lack knowledge of your private data. Retrieval-Augmented Generation (RAG) bridges this gap by injecting relevant context from your own documents into the LLM’s prompt window.

This blueprint establishes a production-grade RAG pipeline capable of digesting PDFs, databases, and internal wikis to answer user queries accurately without hallucinations.

Architecture

The workflow consists of two main pipelines: Ingestion and Inference.

  1. Ingestion:

    • Load: Extract text from varied sources (S3, SQL, Notion).
    • Split: Chunk text into manageable pieces (e.g., 500 tokens).
    • Embed: Convert chunks into vector embeddings (numbers representing meaning).
    • Store: Save vectors in a specialized Vector Database.
  2. Inference (Query):

    • User Question: “What is our refund policy?”
    • Search: Convert question to vector -> Find nearest neighbors in DB.
    • Augment: Append found text chunks to a system prompt.
    • Generate: LLM provides the final answer based only on the provided context.

Use Cases

  • Internal Knowledge Base: Chatbot that answers HR questions based on Confluence pages.
  • Legal Contract Analysis: “Summarize the indemnification clause in these 50 PDFs.”
  • Customer Support: Auto-draft responses based on past resolved tickets.
  • Code Assistant: Query your own codebase for implementation details.

Implementation Guide

We will build a Python-based RAG engine using LangChain, Qdrant (Vector DB), and OpenAI.

Prerequisites

  • Python 3.10+
  • Docker (for Qdrant)
  • OpenAI API Key

Step 1: Setup Vector Database

We utilize Qdrant for its speed and ease of use.

# docker-compose.yml
version: '3'
services:
  qdrant:
    image: qdrant/qdrant
    ports:
      - "6333:6333"
    volumes:
      - ./qdrant_storage:/qdrant/storage

Run it:

docker-compose up -d

Step 2: Ingestion Pipeline

Create ingest.py to load data and populate the Vector DB.

"""
ingest.py - Loads data into Qdrant
Dependencies: pip install langchain qdrant-client openai tiktoken langchain-community
"""
import os
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant
from langchain_openai import OpenAIEmbeddings

# configuration
os.environ["OPENAI_API_KEY"] = "sk-..." 
COLLECTION_NAME = "my_knowledge_base"

def ingest():
    # 1. Load Data
    loader = TextLoader("./company_policy.txt")
    documents = loader.load()

    # 2. Split Text
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200
    )
    chunks = text_splitter.split_documents(documents)
    
    print(f"Split into {len(chunks)} chunks")

    # 3. Embed & Store
    embeddings = OpenAIEmbeddings()
    
    Qdrant.from_documents(
        chunks,
        embeddings,
        url="http://localhost:6333",
        collection_name=COLLECTION_NAME
    )
    print("Ingestion Complete!")

if __name__ == "__main__":
    ingest()

Step 3: Query Engine

Create query.py to ask questions.

"""
query.py - Chat with your data
"""
import os
from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_openai import OpenAIEmbeddings
import qdrant_client

os.environ["OPENAI_API_KEY"] = "sk-..."
COLLECTION_NAME = "my_knowledge_base"

def ask(question):
    # Connect to DB
    client = qdrant_client.QdrantClient(url="http://localhost:6333")
    embeddings = OpenAIEmbeddings()
    
    vector_store = Qdrant(
        client=client, 
        collection_name=COLLECTION_NAME, 
        embeddings=embeddings
    )

    # Setup LLM & Chain
    llm = ChatOpenAI(model_name="gpt-4", temperature=0)
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
        return_source_documents=True
    )

    # Execute
    print(f"User: {question}")
    result = qa_chain.invoke({"query": question})
    
    print(f"AI: {result['result']}")
    print("\nSources:")
    for doc in result['source_documents']:
        print(f"- {doc.page_content[:50]}...")

if __name__ == "__main__":
    ask("What is the policy on remote work?")

Production Readiness Checklist

Deploying LLMs requires strict guardrails.

[ ] Chunking Strategy: Verified that chunk_size (e.g., 500 vs 2000) matches the complexity of the documents. [ ] Embedding Model: Selected the right model (e.g., text-embedding-3-small vs Ada-002) for cost/performance. [ ] Vector Persistence: Qdrant volume is mounted to persistent disk (EBS/PVC). [ ] Rate Limiting: Implemented exponential backoff for OpenAI API calls (429 Too Many Requests). [ ] Hallucination Check: Added a system prompt instruction: “If you don’t know the answer based on the context, say ‘I don’t know’.” [ ] Cost Estimation: Calculated daily token usage. (Avg query = 500 input + 200 output tokens). [ ] Privacy: Ensured PII is masked before sending text to external Embedding APIs.

Cloud Cost Estimator

Dynamic Pricing Calculator

$0 / month
MVP (1x) Startup (5x) Growth (20x) Scale (100x)
MVP Level
Compute Resources
$ 15
Database Storage
$ 25
Load Balancer
$ 10
CDN / Bandwidth
$ 5
* Estimates vary by provider & region
0%
Your Progress 0 of 0 steps